My research explores the role of representation theoretical objects in algebraic geometry. My main work focuses on the study and development of a generalized notion of conformal blocks from an algebraic geometric point of view. I am interested in particular in how these objects relate to moduli spaces of principal bundles and of stable curves. You can learn more about this using these slides, or these ones. For more introductory slides on the use of representation theory in algebraic geometry, see here. You can find my research statement here.

I am currently a postdoc in the Math department at the University of Pennsylvania.

 

I am on the job market for tenure-track positions.

I was previously a Hill Assistant professor at Rutgers University and an Instructor at Princeton University.

 

Some of my collaborators are:

Pieter BelmansEmily Clader, Hans FranzenAngela Gibney, Jiuzu Hong, Victoria Hoskins,
Daoji Huang, Shiyue LiSvetlana Makarova, Rohini Ramadas and Nicola Tarasca.


During my PhD at the University of Duisburg-Essen I worked with Jochen Heinloth.

Chiara Damiolini